Complete Protection...

Technical Bulletin

HOW TO AIM AT MOVING TARGET OF INFECTIOUS BRONCHITIS

"IBV is a moving target" says Dr. Cavanagh a Aetiology: world renowned authority on Infectious Infectious Bronchitis virus belongs to Corona Bronchitis. He says "The task before the poultry **virus group 3.** The virus is round to pleomorphic farmers and the poultry scientists is formidable and it's envelop has club shaped surface but not impossible. There were never easy projections and hence named as "Corono" victories in field of vaccine development and all (crown). attendant methodology. The traditional Antigenicity - Mutation-Variant strains : approach together with support from impressive IB virus is single stranded RNA virus with 4 array of genetic engineering techniques is genes. (1) S- Surface protein, (2) M- Membrane already busy in facing this formidable situation. protein, (3) E -Small membrane protein, (4) N – In preparing this note we have a utilitarian Nucleocapsid protein. approach – it should provide insight in the nature Out of this S. protein is not stable and is highly of disease, its spread and attendant damages for prone to variation. S1 protein has 500 amino our farmer brothers and some pertinent thoughts acids. If there is change in sequence to the extent on "what best could be done" for our learned of even 2 - 3% it becomes a new virus type. consultants and practicing veterinarians. Now let us know the important role of S1 spike

Introduction:

It was customary to define Avian Infectious Bronchitis as an acute highly contagious viral respiratory distress accompanied by precipitous drop of egg production in laying flocks. The epidemiological picture has now changed. In addition to IB associated with respiratory distress and reproductive disorder, we are also proventricular manifestations of the disease with manifestation of disease. severe losses.

INFECTIOUS BRONCHITIS – A MOVING TARGET CONTEMPORARY CRISIS; CONTEMPORARY SOLUTION

Vol. 1

June 2009

protein.

- i. It induces virus neutralizing and HI antibodies.
- ii. It is a major inducer of protective immunity.
- iii. Minor differences in amino acid sequence on S1 protein (2 - 3%) can result in major antigenic difference between strains.

witnessing nephrotropic, enterotropic and The new variants may cause unusual

The common IB strains reported in literature are:-

Respiratory -

- Massachusetts
- Connecticut
- Arkansas
- Georgia

Nephrotropic -

- T strain
- Gray
- Holte strain

Although H120 is still the most widely used vaccine all over the world but its protective scope appears to be diminishing with time. Currently several broiler and laver variants exhibit lower protection with H120 vaccine and newer vaccines e.g. attenuated 793B or 4/91 strains are being employed in several countries. These vaccine strains are not available currently in India. INDOVAX is continuing research in new variants to find a suitable protective type from indigenous isolates.

A general understanding on classification of IB virus isolates :

It would be a formidable task to take note of

thousands and thousands of IB isolates. For sake of general understanding they could be filled in the table given below.

Host: It is generally considered that the chicken is the only bird that is naturally infected by IBV and in which the virus causes disease. All ages are susceptible but the disease is more severe in chicks. As age increases chick become more resistant to nephrogenic effects, oviduct lesions and mortality due to infection.

It is important to understand that proper protection of chicks is of paramount importance for successful poultry operation. A susceptible, inadequately protected chick can lose its oviduct; if infected in the early stage of life.

Transmission:

The virus spreads rapidly among chicken in a flock. The route is usually by inhalation of virus droplets produced by sick birds. Wind borne infections can infect surrounding farms. The incubation period is very short, **18 to 36 hours.** Birds become ill, production parameters are challenged and carrier birds become a nucleus of infection for other farms.

Movement of live birds and day old chicks(DOC's)

Classification of IB Viruses 1. Object - what do they do?				
Scheme	Basis	Value		
Serotype	Virus neutralization	Traditional method of classification important to know for designing protection		
Pathotype	Tropism i. Respiratory ii. Enterotropic iii. Nephrotropic iv. Proventricular v. Uterotropic	Tropism is not serotype specific but some strains show tropism. Valuable to know for designing protection		
2. Object - will the vaccine protect?				
Protectotype	Cross protection in vivo	This is gold standard for designing a vaccine for a particular problem		
3. Object - what the virus is?				
Genotype	Molecular differences	Valuable to know epidemiology/ spread of disease / tracing of disease / valuable input for vaccine industry		

are potential source of introduction of IBV. production varies according to stage of lay at However, the poultry trade takes conscious steps in proper disinfection of hatching eggs before setting them for hatching.

IB. But there are few reports voicing strong possibility of vertical transmission.

Clinical syndrome :

Avian infectious bronchitis is primarily a respiratory infection of chicks. Nevertheless, three clinical manifestation of IB are generally observed namely Respiratory disease, Reproductive disease and Nephrotic disease.

Some layers may show pendulous abdomen with cystic remnant of right oviduct. Cystic oviduct In general the age wise prevalence of disease is as may be filled with clear fluid exceeding 1000 ml. under:-

Respiratory Disease :

Respiratory disease is most frequently observed syndrome of IB. In chicks between 2 to 6 weeks of age, main clinical signs are difficulty in breathing, tracheal rales, coughing and sneezing. Feed consumption is reduced which affects body weight. Respiratory disease is due to narrowing of the lumen of tertiary bronchi.

Secondary infections

with CRD and E. coli cause heavy mortality. Some chicks may develop nephritis. Few isolates of IBV can cause spectacular mortality due to nephritis, visceral gout and urolithiasis.

Reproductive disorders:

2

IBV at young age and or after maturity, both can It has been noticed that some strains of IBV are lead to reproductive problems in hens. In adult uterotropic. In such cases albumin forming birds clinical signs may not be present or may region is affected. There is disturbance in take the form of a mild respiratory disease. A physiological rhythm of cells and consequently decline in egg production usually follows within there is total cessation of egg formation. 7 to 12 days. The severity of the decline in egg

infection and strain involved.

Typically declines are between 3 to 10% but reduction upto 50% have also been observed in Vertical transmission usually does not occur in some flocks. This is associated with smaller size eggs, inferior shell, soft shell, misshapen eggs and thin watery albumin

> If IBV infection occurs when chicks are less than 2 weeks of age, permanent damage to oviduct may result. Such birds turn out as "false layers" and one may lose upto 25% adult hens as false layers.

Why there is egg drop, misshapen eggs, discolored eggs, shell less eggs :

Experimental IB infection of the oviduct of mature hens results in decreased height and loss of cilia from epithelial cells, dilatation of tubular glands, infiltration of lymphocytes and other mono nuclear cells, plasma cells, heterophils, edema and fibro plasia of the mucosa of all regions of oviduct.

In experimental intra tracheal infection of 34 weeks layers, virus could be detected in 3 - 6days post infection. De-ciliation of epithelium occurred. Tubular glands were replaced by fibrous tissue.

In fact every portion of reproductive tract gets affected. A decline in shell quality occurs when oviduct is directly affected. This decline is reflected as cystic right oviduct, impacted oviduct and ruptured ova, poor egg specific gravity, reduced shell thickness, misshapen eggs, deterioration in shell pigment.

Diagnosis:

i) Virus isolation :

Lung, trachea and caecal tonsils are ideal tissues for attempting virus isolation. In case of nephrotropic strains kidney tissues should also be examined for IB virus. Virus is isolated in 9 – 10 days old SPF egg embryo. It causes characteristic dwarfing of embryo. Virus isolation is a protracted exercise. It is necessary to give 5 – 6 blind passages before virus can be recovered. This is gold standard of IB diagnosis.

ii) Agar Gel Precipitation Test (AGPT) :

It is a quick test. It needs high titred mono specific IB serum. One can use allantoic fluid from IB infected embryos as an antigen. Positive reaction is exhibited by line of identity.

Negative AGPT does not confirm absence of IB.

iii) Enzyme Linked Immunosorbent Assay (ELISA):

ELISA kits are available from IDEXX, KPL, Artec and other companies. Each kit has its own calibration, positive/negative values and system of interpretation.

ELISA shows IBV exposure but it will not identify the serotype involved.

A well protected flock will have high titre and low CV (Coefficient of variance) less than 25.

ELISA test can estimate MAB status, sero conversions as a result of vaccination/infection.

In interpreting ELISA titre due consideration should be given to vaccination history and optimum performance traits of the breed.

MAB – KEY FOR SAFE JOURNEY:

Maternal antibody is important for providing protection against IBV induced mortality.

IB isolate number	MAB status	% Mortality
1.	Negative	37%
	Positive	3%
2.	Negative	10%
	Positive	0%
3.	Negative	27%
	Positive	16%

In one of the experiments reported in literature mortality during first 5 weeks in MAB positive and negative chicks when exposed at day 1 of age is recorded in above table.

Mortality depends on pathotype of virus. But MAB carrying chicks have less mortality and more chance of healthy survival. MAB can prevent spread of disease in internal organs.

It is important to remember that exposure to IBV during first 3 weeks of life can destroy the oviduct of the bird.

Highest titre and protection of progeny can be achieved by judicious use of infectious bronchitis inactivated vaccines.

Control:

For any disease the methods available for control are two fold:-

- 1. Bio-security
- 2. Immunization

1. Bio-security :

Biosecurity should not be restricted to only hygienic measures by liberal use of variety of disinfectants. It should include verification of DOC's received on farm, vaccination history of parents, MAB profile of chicks, adequate down time in between two flocks. Rigorous biosecurity measures should be adopted if earlier flock was infected with IB. Effective quarantine, developing a sentinel validation of disinfected shed, restricted entries and not keeping multiple age groups on the farm, together with laboratory aided vaccination

programme. Let the bio-security emerge as a total plan to reduce virus bio-burden on the farm.

2. Immunization :

Poultry industry have got free availability of live vaccines and inactivated vaccines for this purpose.

know more about them.

Inactivated vaccines are intended for use in i) Live vaccines : layers and breeders. The vaccines are administered by subcutaneous inoculation at 6 Mass strains H52 and H120 vaccines are weeks and then boosted at 13-18 weeks of age, to commonly known to poultry industry. Let us pullets which have been previously primed with live attenuated vaccines. Inactivated vaccines The H strain of IB was one of the earliest live provide high and uniform levels of antibodies attenuated vaccines to be developed and is being that persist for longer periods than those induced by live vaccination. These high levels of used in most parts of the world for last 50 years. antibodies are particularly useful in providing H stands for the name of owner- Huyben- a protection to the internal organs by preventing poultry farmer in Holland. It was isolated from a spread of the virus. In layers and breeders, inactivated vaccines provide protection against It was developed for use at both 52 (H52) and 120 reduction in egg production, which might not (H120) vaccine levels. It has ability to provide always be afforded by live vaccination. In addition, in breeders, progeny chicks will be heterologous cross protection against number of protected by maternally transferred antibodies. different serotypes. It has proved to be most Progeny chicks that originate from breeders enduring live attenuated vaccine. H120 is vaccinated with inactivated vaccines have high possibly most widely used live vaccine globally. and uniform maternal antibody levels in An important work of Cook et al 1986 : comparison to those from breeders vaccinated Chicks were immunized with H120 live IB with live vaccines only. Most of the inactivated vaccines are of one type, Mass type; however, vaccine on day 1 and were challenged thereafter bivalent vaccines that incorporate additional variant antigens may also be necessary. Mixed infection comprising of pool of E.coli and Inactivated vaccines are produced from IBV heterologous IB virus. Good cross protection was infected embryonic fluid, which is inactivated achieved following challenge with several but and usually formulated as oil emulsion vaccine.

broiler farm.

with;

not all heterologous isolates.

Good protection was obtained against the strains viz. Holte, Iova, D207, Aust T, D 3896 and several UK isolates. Dr. Jackwood found that IB isolates possessing differences to the extent of 40% in sequence homology can yet be contained with H120. Dr. Kenn Ruda states "from the earliest discovery of the virus", mass strain has become truly a global virus. Variations have been shown but good cross protection is demonstrated by mass strain.

ii) Inactivated vaccines :

It is necessary that the birds are earlier primed with live IB vaccines properly so that the subsequent administration of inactivated vaccines produce a spectacular secondary response.

It is possible to incorporate strategic strains in inactivated vaccine to afford tailor made protection in situations as Nephrotropic syndrome, visceral gout or in such situation where variants are reasonably suspected but can not be easily attenuated to offer a live vaccine.

Consider this before introducing a new vaccine : Although IB is distributed world wide, only certain strains can be considered global. Most variations in

genetic make-up of virus occur at best on regional basis. There can not be any one "world wide" successful product. In nature new variants are produced virtually daily. Nature in most cases eliminates these in process of natural selection.

Therefore, the strategy should be;

- a) The correct use of vaccines including correct dosing, application, sensible introduction and withdrawal of antigens as appropriate, before blaming variants for the problem.
- b) Attempt to use present vaccines or combinations thereof, to eliminate closely related variants. It has been shown recently in field tests (more effective than laboratory tests) differences of up to 40% can be controlled with present products.
- c) The 3rd scenario, and it is rare, is the isolation of a true variant at least 70% different from the present known strains. In this case, crossprotection attempts will prove futile and a potential new vaccine may be required. It is important that pathogenicity tests are performed as a number of non pathogenic variants are known to exist. There is always an option to introduce such heterologus strains as one of the component of IB inactivated vaccine.

Dr. Jackwood has a valuable suggestion:

"Best results for controlling IB are achieved by using a vaccine strain that is identical or highly similar to the causative field strain (s)".

Taming the moving target :

The IB virus is vulnerable to high degree of mutation. But the foregoing survey of available knowledge does not ask for new vaccines at every stage. Fortunately H120 has been authenticated by several workers to give broad protection against most of the variants reported to be causing respiratory/ nephrotropic IB. There is a promising choice of incorporating strategic strains in

inactivated vaccines. With the aid of these weapons in the armor of science, the moving target of IB can be humbled and tamed along with the aid of other laboratory supports, translating sera conversions at various stages:-

Indovax at service of farmers -

Indovax provides the broad spectrum H120 live vaccine in 3 presentations:

- 1) Newcastle disease Asplin F strain + Mass H120 live vaccine for day old chicks
- 2) Newcastle disease Lasota strain + Mass H120 live vaccine intended for growers, commercial layers & breeders
- 3) Infectious Bronchitis H120 monovalent vaccine for chicks, pullets and adult birds

Infectious Bronchitis killed vaccine in following presentations :

- i) Monovalent IB killed vaccine
- ii) Bivalent ND + IB killed vaccine
- iii) Trivalent ND + IB + IBD killed vaccine
- iv) Multi component 4 way ND + IB + IBD + REO killed vaccine
- v) Infectious Bronchitis Inactivated vaccine with strategic isolates to contain specific nephrotropic, gout or reproductive problems

Indovax also provide services for MAB profiling and sero conversion monitoring for IB by ELISA method to its customers on basis of mutual understanding.

Vaccination schedule: There is no thumb rule for vaccination schedule. This is decided on the basis of (1) MAB, (2) Sero conversion, (3) Previous history of disease on farm, (4) Disease in surroundings, (5) Vulnerable age, (6) Pathotype of virus, (7) Success/ failure of earlier schedules, (8) Population handled. This work should be ideally left to poultry consultants.

(In general it is necessary to do repeated vaccination to keep protective titers)

A vaccination schedule is suggested for general guidance. It should be discussed with the poultry consultant and tallied and weighed with previous experience.

Day/Week	Vaccine	Route
Day 1	Mass H120 (Bronkichick) alone or Bronki-F	I/N and I/O
Day 25	Mass H120 (Bronkichick) alone or Bronki-L	D.W.
Day 42-45	Mass H120 (Bronkichick) alone or Bronki-L	D.W.
	ND+IB killed vaccine (Polyvax)	S/C
Day 84	Mass H120 (Bronkichick) alone	D.W.
Day 112	ND + IB killed vaccine/ Polyvax (NB)/ (Trivalent or 4-way vaccine as per need)	S/C
Week 32	Mass H120 alone or with Lasota (To be repeated every 7 weeks till liquidation of flock)	D.W.

Contemporary crisis has a contemporary solution:

The contemporary crisis in management of IB control lies in the problem posed by umpteen IB variants. We have to address this problem in a practical manner. We should judiciously use Mass H120 vaccine for priming and the booster consisting of IB inactivated vaccine. Vaccines properly formulated are contemporary hopes to over come this crisis.

Contribution from Scientific team of INDOVAX

6

Technical Services

INDOVAX Private Limited, SCO-24, Sector-14, Gurgaon 122 001 (INDIA) Tel : (0124) 231 5044, 231 5045, 231 5046, Fax : (0124) 231 4680 E-mail : mail@indovax.com, Website : www.indovax.com

References can be made available on request

